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Abstract: The analytic expression for absorption power of a strong electromag-

netic waves caused by confined electrons in quantum well is obtained in the case

of electron-optical phonon scattering. Nonlinear optically detected electrophonon

resonance (ODEPR) effect in a specific GaAs/AlAs quantum well with triangu-

lar potential is investigated. Conditions for ODEPR are discussed based on the

curves expressing the dependence of absorption power on the photon energy.

From these curves we obtained ODEPR- linewidths as profiles of the curves.

Computational results show that the nonlinear ODEPR- linewidths increase with

temperature and decrease with electric field amplitude.

Keywords: absorption power, quantum well, triangular potential, ODEPR-

linewidths

1 INTRODUCTION

Optically detected electrophonon resonance linewidths are the good tools for investigating

scattering mechanisms of carriers and hence can be used to probe electron-phonon scattering

mechanisms. Most of the works on linewidths have focused on the transport properties of

low dimensional semiconductors. Unuma et al. [1] investigated the intersubband absorption

linewidths in GaAs quantum well for various kinds of scattering mechanisms. The obtained

results of this work showed that the linewidths decrease with well width. Kang and co-

works [2, 3, 4, 5] used the operator projection technique to study intraband linewidths of the

optical conductivity in quantum wells due to LO-phonon scattering. Their works indicated

that the linewidths increase with the temperature and decrease with the well widths. Li and

Ning [6] investigated the influence of electron-electron and electron-phonon scattering on the

linewidths in quantum wells. Their results were in line with experimental data obtained by

Unuma et al. [7], which showed the increase of linewidths with temperature. Lee et al. applied

the continued-fraction-based theory to investigate the dependence of the linewidths on the

temperature in GaAs and CdS [8]. Their results showed that, the linewidths increase with

the temperature. The study of linewidths, however, has mostly focused on linear ODEPR -
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linewidth, still limited on nonlinear ones. Therefore, nonlinear ODEPR- linewidth effect in

quantum wells is needed for further study.

Recently, our group has proposed a computational method to obtain linewidths from graphs

of P (ω) [9], and used this method to determine cyclotron resonance linewidths in CQW [10],

and in GaAs/AlAs quantum wires [11]. In this paper, we investigate the nonlinear absorption

power and ODEPR linewidths in the quantum well with triangular potential. First, we

derive the analytical expression of nonlinear absorption power. From curves on the graphs

of absorption power as a function of photon energy, we obtain ODEPR- linewidths as a

profiles of curves by using the profile method presented in one of our previous papers [9].

The dependences of nonlinear linewidth on temperature and the electric field amplitude are

discussed.

2 MODEL OF A QUANTUM WELL WITH TRIANGULAR POTENTIAL

The electron wave function in quantum well with triangular potential takes the form [12]

ψ~k⊥,n
(~r⊥, z) =

1√
LxLy

ei
~k⊥~r⊥


(
2m∗eE0

~2

)1/3
Ai′2(s0)− s0Ai2(s0)


1/2

×Ai

[(
2m∗eE0

~2

)1/3(
z − En

eE0

)]
, (1)

where Lx, Ly are the well’s widths in x, y dimensions; ~k⊥ = ~kx + ~ky; ~r⊥ = x~i + y~j;

m∗ is the electron effective mass; e is the charge of electron; E0 is electric field amplitude;

s0 =
(
2m∗α
~2
)1/3 (−En

α

)
; n the radial quantum number (n = 1, 2, 3, . . .); En the energy levels

in z dimensions which has the form

En =

(
~2

2m∗

)1/3 [
3πeE0

2

(
n− 1

4

)]2/3
(2)

and the Airy function can be given by

Ai(s) =
1

π

∞∫
0

cos

(
t3

3
+ st

)
dt. (3)

The energy levels of the system can be worked out by

E(k⊥, n) =
~2k2⊥
2m∗

+

(
~2

2m∗

)1/3 [
3πeE0

2

(
n− 1

4

)]2/3
. (4)

The electron form factor is given by [12]

In′,n =


(
2m∗eE0

~2

)1/3
Ai′2(s0)− s0Ai2(s0)


2( Lz∫

0

eiqzzAi

[(
2m∗eE0

~2

)1/3(
z − En′

eE0

)]
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×Ai

[(
2m∗eE0

~2

)1/3(
z − En

eE0

)]
dz

)2

. (5)

The integral in Eq.(5) cannot be calculated analytically due to its complexity. However, the

physical meaning can be worked out by numerical computation.

3 ANALYTICAL RESULTS

When an electromagnetic wave characterized by a time-dependent electric field of amplitude

E0 and angular frequency ω is applied, the nonlinear absorption power delivered to the system

is given by [15, 16]

PNLn(ω) =
E2

0z

2
Re[σNLn(ω)] =

E2
0z

2
{Re[σzz(ω)] + Re[σzzz(ω)E0z(ω)]} ,

= P0(ω) + P1(ω). (6)

Here σzz(ω) is the z component of the optical conductivity tensor. Utilizing the general

expression for the conductivity, presented by Kang el al. [17] and Lee et al. [18], the linear

absorption power is given, at the subband edge (kz = 0), by the following expression

P0(ω) =
E2

0z

2
Re[σzz(ω)] =

e3E3
0

~[Ai′2(s0)− s0Ai2(s0)]2

×
∑
k⊥,n

∑
k′⊥,n

′

B0(ω)

(~ω −∆E)2 +B2
0(ω)

δk⊥,k′⊥Kn,n′Ln,n′ , (7)

where

B0(ω) =
π

fβ − fα

∑
~q,γ

|Cβγ(~q)|2
{

[(1 +Nq)fγ(1− fα)−Nqfα(1− fγ)]δ(~ω − Eγα + ~ωq)

+ [Nqfγ(1− fα)− (1 +Nq)fα(1− fγ)]δ(~ω − Eγα − ~ωq)
}

+
π

fβ − fα

∑
~q,γ

|Cγα(~q)|2
{

[(1 +Nq)fβ(1− fγ)−Nqfγ(1− fβ)]δ(~ω − Eβγ + ~ωq)

+ [Nqfβ(1− fγ)− (1 +Nq)fγ(1− fβ)]δ(~ω − Eβγ − ~ωq)
}
.

In the above equation, we denote Eαβ = Eβ − Eα = Ek′⊥,n′ − Ek⊥,n; Ek⊥,n and Ek′⊥,n′ are

the energy of the electron in the initial and final state, respectively; fα(fβ) is the Fermi-Dirac

distribution function of electron with energy Eα(Eβ); and Kn,n′ , Ln,n′ are given by

Kn,n′ =

+∞∫
−∞

Ai

[(
2m∗eE0

~2

)1/3(
z − En

eE0

)]
×Ai

[(
2m∗eE0

~2

)1/3(
z − En′

eE0

)]
dz; (8)

Ln,n′ =

+∞∫
−∞

Ai

[(
2m∗eE0

~2

)1/3(
z − En′

eE0

)]
Ai′

[(
2m∗eE0

~2

)1/3(
z − En

eE0

)]
dz. (9)
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Transforming the sums over ~q and γ in Eq.(8) into integrals, we obtain

B0(ω) =
LxLyDm

∗

8π2~2(fβ − fα)

∑
n′′

{([
− 1

k′⊥ +M01
+

1

k′⊥ −M01

]
F01

+
[
− 1

k′⊥ +M02
+

1

k′⊥ −M02

]
F02

)
N1 +

([ 1

−k⊥ +M03
+

1

k⊥ +M03

]
F03

+
[ 1

−k⊥ +M03
+

1

k⊥ +M03

]
F04

)
N3

}
; (10)

where

D =

[
e2~ωLO
2ε0V0

(
1

χ∞
− 1

χ0

)]1/2
; (11)

here ~ωLO is the LO-phonon energy, ε0 is the permittivity of free space, χ∞ and χ0 are the

high- and low-frequency dielectric constants, respectively;

M01,02 =

[
k2⊥ +

2m∗

~2
(~ω ± ~ωLO − En′′ + En)

]1/2
;

M03,04 =

[
k
′2
⊥ −

2m∗

~2
(~ω ± ~ωLO − En′ + En′′)

]1/2
;

F01 = (1 +Nq)(1− fα)
(
1 + exp[θ(

~2M2
01

2m∗
+ En′′ − EF )]

)−1
;

F02 = Nq(1− fα)
(
1 + exp[θ(

~2M2
02

2m∗
+ En′′ − EF )]

)−1
;

F03 = (1 +Nq)fβ
[
1−

(
1 + exp[θ(

~2M2
03

2m∗
+ En′′ − EF )]

)−1]
;

F04 = Nqfβ
[
1−

(
1 + exp[θ(

~2M2
04

2m∗
+ En′′ − EF )]

)−1]
;

N1 = N2 =

+∞∫
−∞

In′,n′′dqz;N3 = N4 =

+∞∫
−∞

In,n′′dqz.

Inserting Eq.(10) into Eq.(7), we obtain the expression of linear absorption power. The first

order nonlinear absorption power is given by the following expression

P1(ω) =
E2

0

2
Re[σzzz(ω)E0(ω)]

=
e3E3

0~
2m∗

(
2m∗eE0

~2

)4/3
[Ai′2(s0)− s0Ai2(s0)]3

∑
nα

∑
nβ

∑
nγ

∑
nδ

fk⊥β ,nβ − fk⊥α,nα
(~ω − Eβα)2 +B2

0(ω)

×
{
−

[(~ω − Eβα)B1(2ω) + (2~ω − Eβγ)B0(ω)]

(2~ω − Eβγ)2 + [B1(2ω)]2

+
[(~ω − Eβα)B2(2ω) + (2~ω − Eδα)B0(ω)]

(2~ω − Eδα)2 + [B2(2ω)]2

}
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× δk⊥αk⊥β δk⊥γ k⊥α δk⊥βk⊥γ δk⊥βk⊥δ δk⊥δk⊥α ×KnαnβKnγnαKnβnγKnβnδKnδnα

× LnαnβLnγnαLnβnγLnβnδLnδnα ; (12)

where

B1(2ω) =
LxLyDm

∗

8π2~2(fβ − fα)

∑
nµ

{([
− 1

k⊥γ +M11
+

1

k⊥γ −M11

]
F11

−
[
− 1

k⊥γ +M12
+

1

k⊥γ −M12

]
F12 −

[
− 1

k⊥γ +M13
+

1

k⊥γ −M13

]
F13

+
[
− 1

k⊥γ +M14
+

1

k⊥γ −M14

]
F14

)
L1 +

([ 1

−k⊥β +M15
+

1

k⊥β +M15

]
F15

−
[ 1

−k⊥β +M16
+

1

k⊥β +M16

]
F16

)
L2

}
; (13)

B2(2ω) =
LxLyDm

∗

8π2~2(fβ − fα)

∑
nµ

{([ 1

−k⊥δ +M21
+

1

k⊥δ +M21

]
F21

−
[ 1

−k⊥δ +M22
+

1

k⊥δ +M22

]
F22 −

[ 1

−k⊥δ +M23
+

1

k⊥δ +M23

]
F23

+
[ 1

−k⊥δ +M24
+

1

k⊥δ +M24

]
F24

)
L3 +

(
−
[
− 1

k⊥α +M25
+

1

k⊥α −M25

]
F15

+
[
− 1

k⊥α +M26
+

1

k⊥α −M26

]
F26

)
L4

}
; (14)

M11,12 =

[
k2⊥β −

2m∗

~2
(2~ω ± ~ωLO − Enβ + Enµ)

]1/2
,

M13,14 =

[
k2⊥α −

2m∗

~2
(2~ω ± ~ωLO − Enβ + Enµ)

]1/2
,

M15,16 =

[
k2⊥α +

2m∗

~2
(2~ω ± ~ωLO − Enµ + Enα)

]1/2
,

M21,22 =

[
k2⊥α +

2m∗

~2
(2~ω ± ~ωLO − Enµ + Enα)

]1/2
,

M23,24 =

[
k2⊥β +

2m∗

~2
(2~ω ± ~ωLO − Enµ + Enβ )

]1/2
,

M25,26 =

[
k2⊥α +

2m∗

~2
(2~ω ± ~ωLO − Enβ + Enµ)

]1/2
,

F11 = (1 +Nq)fβ
[
1−

(
1 + exp[θ(

~2M2
11

2m∗
+ Enµ − EF )]

)−1]
−Nq(1− fβ)

(
1 + exp

[
θ(
~2M2

11

2m∗
+ Enµ − EF )]

)−1
,

F12 = (1 +Nq)(1− fβ)
(
1 + exp[θ(

~2M2
12

2m∗
+ Enµ − EF )]

)−1
−Nqfβ

[
1−

(
1 + exp

[
θ(
~2M2

12

2m∗
+ Enµ − EF )]

)−1]
,
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F13 = (1 +Nq)fα
[
1−

(
1 + exp[θ(

~2M2
13

2m∗
+ Enµ − EF )]

)−1]
−Nq(1− fα)

(
1 + exp

[
θ(
~2M2

13

2m∗
+ Enµ − EF )]

)−1
,

F14 = (1 +Nq)(1− fα)
(
1 + exp[θ(

~2M2
14

2m∗
+ Enµ − EF )]

)−1
−Nqfα

[
1−

(
1 + exp

[
θ(
~2M2

14

2m∗
+ Enµ − EF )]

)−1]
,

F15 = (1 +Nq)(1− fα)
(
1 + exp[θ(

~2M2
15

2m∗
+ Enµ − EF )]

)−1
−Nqfα

[
1−

(
1 + exp

[
θ(
~2M2

15

2m∗
+ Enµ − EF )]

)−1]
,

F16 = (1 +Nq)fα
[
1−

(
1 + exp[θ(

~2M2
16

2m∗
+ Enµ − EF )]

)−1]
−Nq(1− fα)

(
1 + exp

[
θ(
~2M2

16

2m∗
+ Enµ − EF )]

)−1
,

L1 =

+∞∫
−∞

Inµ,nγdqz, L2 =

+∞∫
−∞

Inµ,nβdqz,

L3 =

+∞∫
−∞

Inµ,nδdqz, L4 =

+∞∫
−∞

Inα,nµdqz;

F21 = (1 +Nq)(1− fα)
(
1 + exp[θ(

~2M2
21

2m∗
+ Enµ − EF )]

)−1
−Nqfα

[
1−

(
1 + exp

[
θ(
~2M2

21

2m∗
+ Enµ − EF )]

)−1]
,

F22 = (1 +Nq)fα
[
1−

(
1 + exp[θ(

~2M2
22

2m∗
+ Enµ − EF )]

)−1]
+Nq(1− fα)

(
1 + exp

[
θ(
~2M2

22

2m∗
+ Enµ − EF )]

)−1
,

F23 = (1 +Nq)(1− fβ)
(
1 + exp[θ(

~2M2
23

2m∗
+ Enµ − EF )]

)−1
−Nqfβ

[
1−

(
1 + exp

[
θ(
~2M2

23

2m∗
+ Enµ − EF )]

)−1]
,

F24 = (1 +Nq)fβ
[
1−

(
1 + exp[θ(

~2M2
24

2m∗
+ Enµ − EF )]

)−1]
−Nq(1− fβ)

(
1 + exp

[
θ(
~2M2

24

2m∗
+ Enµ − EF )]

)−1
,

F25 = (1 +Nq)fβ
[
1−

(
1 + exp[θ(

~2M2
25

2m∗
+ Enµ − EF )]

)−1]
−Nq(1− fβ)

(
1 + exp

[
θ(
~2M2

25

2m∗
+ Enµ − EF )]

)−1
,

F26 = (1 +Nq)(1− fβ)
(
1 + exp[θ(

~2M2
26

2m∗
+ Enµ − EF )]

)−1
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−Nqfβ
[
1−

(
1 + exp

[
θ(
~2M2

26

2m∗
+ Enµ − EF )]

)−1]
.

Inserting Eq.(7) and Eq.(12) into Eq.(6), we obtain the expression of nonlinear absorption

power. It can be seen that the analytical results are significant. However, physical conclusions

can be drawn from numerical results and graphical plotting.

4 NUMERICAL RESULTS AND DISCUSSIONS

To clarify the obtained results we numerically calculate and graphically plot the nonlinear

absorption power PNLn(ω) for a specific quantum well with triangular potential made up of

GaAs/AlAs. The parameters used in our calculations are as follow [13, 23, 24, 25]: ε0 = 12.5,

χ∞ = 10.9, χ0 = 13.1, m∗ = 0.067m0 (m0 being the electron rest mass), ~ωLO = 36.25 meV,

nα = 0, nβ = 1.

1a 1b 1c2a

2b

2c

2d

0 10 20 30 40 50 60
0

5

10

15

20

Photon Energy HmeVL

PH
Ω
L
Ha

rb
.u

ni
ts
L

Figure 1: Nonlinear absorption power PNLn(ω) as a function of photon energy. T = 200 K,

E0 = 106 V/m.

The expression of nonlinear absorption power in Eq.(6) exhibits a resonant behavior due to

the ODEPR condition

2~ω ± Eβα ± ~ωLO = 0, or Eβ = Eα ± 2~ω ± ~ωLO. (15)

Equation (15) is the nonlinear ODEPR condition in quantum well with triangular potential.

When the nonlinear ODEPR conditions are satisfied, in the course of scattering events, elec-

trons in the state |α〉 could make transition to state |β〉 by absorbing two photons of energy

~ω, accompanied with the absorption and/or emission of a LO-phonon of energy ~ωLO.

Figure 1 describes the dependence of nonlinear absorption power on the photon energy at

T = 200 K, corresponding to Eβα = 14.6 meV. The graph has seven peaks, each of which

describes a specific transition. Peaks 1a, 1b and 1c correspond to the linear case and satisfy
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the linear ODEPR condition:

~ω ± Eβα ± ~ωLO = 0, or Eβ = Eα ± ~ω ± ~ωLO. (16)

Peaks 2a, 2b, 2c, 2d, satisfying the linear ODEPR conditions, can be explain as follows:

Peak 2a, corresponding to the value ~ω = 7.3 meV, describes the transition from state |α〉
to state |β〉 by absorbing two photons ~ω and without absorbing or emitting of a LO-phonon

of energy ~ωLO. Peak 2b and 2d correspond to the value ~ω = 10.825 meV and ~ω = 25.425

meV, which satisfy the nonlinear ODEPR condition Eβ = Eα ± 2~ω ± ~ωLO. Peak 2c corre-

sponds to the value ~ω = 18.125 meV, which satisfies the condition 2~ω = ~ωLO. Therefore,

this peak describes the intraband transition. Figure 2 shows the dependence of nonlinear
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Figure 2: Dependence of nonlinear

ODEPR- linewidths on temperature T .

E0 = 106 V/m.
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Figure 3: Dependence of nonlinear

ODEPR- linewidths on electric field

amplitude E0. T = 200 K.

ODEPR- linewidths on temperature. From the figure we can find that the linewidths in-

creases with temperature. This result is consistent with the theoretical results of Kang and

co-works [2, 3, 4, 5], and of Li and Ning’s results [6], and experimental data of Unuma [7]. This

can be explained that as temperature increases, the probability of electron-phonon scattering

increases, and so do the linewidths.

Figure 3 shows the dependence of nonlinear ODEPR- linewidths on electric field amplitude.

It can be seen from the figure that ODEPR- linewidths decrease with electric field amplitude

E0. This can be explained that as the electric field amplitude increases the confinement

of electron decreases, the probability of electron-phonon scattering decreases, and so do the

ODEPR- linewidths.

Figure 4 and 5 are the comparison between the linear ODEPR - linewidths and the nonlinear

ones with different values of temperature and electric field amplitude. The nonlinear ODEPR

- linewidths are always smaller than linear ones. This can be explained that the probability

of absorbing two photons is smaller than the probability of absorbing one photon.
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Figure 4: Dependence of linear ODEPR-

linewidths (square) and nonlinear ones

(round) on temperature T . E0 = 106 V/m.
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Figure 5: Dependence of linear ODEPR-

linewidths (square) and nonlinear ones

(round) on electric field amplitude E0. T =

200 K.

5 CONCLUSIONS

We have obtained analytic expression of absorption power in quantum well with triangular

potential due to electron–LO-phonon interaction. We numerically calculated and plotted

graph of PNLn(ω) for a specific quantum well to clarify the theoretical results and obtained

the ODEPR conditions. The importance of the present work is the appearance of resonant

peaks satisfying the nonlinear ODEPR conditions. A special attention has been given to the

behavior of the ODEPR spectra, such as the splitting of ODEPR peaks from the selection

rules. Therefore, they can be applied to optically detect the distance between two energy

levels of electrons in quantum well with triangular potential.
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